Mathematical Models in Communicable Diseases

Basic information

Workload: 

45 hours

Prerequisite: 

Does not exist.

Syllabus: 

Since the first attempts to model the transmission of malaria by Ross at the beginning of the 20th century, several advances in mathematical and computational techniques have allowed the development of models with predictive capacity and that have contributed a lot in the design and implementation of epidemic and endemics control strategies.   
1. Introduction to Mathematical Epidemiology 
2. Classes of Models 
3. Deterministic Models 
4. Stochastic Models 
5. Microparasites Models
6. Macroparasitic models 
7. R0 
8. Models in Vector-borne Diseases 
9. Heterogeneities 
10. Control strategies 
11. Fuzzy Logic in Epidemiology 
12. Networks
 

Bibliography

Mandatory: 

·       Massad, E. et al. Métodos Quantitativos em Medicina. Manole Editores, 2003.
·       Massad, E. et al. Fuzzy Logic in Action: Applications in Epidemiology and Beyons. Springer Verlag, 2008.
·       Vynnycky, E. and White, R. Infectious Diseases Modelling. Oxford UNiversity Press, 2010.

Complementary: 

·       Infectious Diseases of Humans: Dynamics and Control by Roy M. Anderson and Robert M. May. Oxford UP. 1991
·       Mathematical Epidemiology of Infectious Diseases by O.Diekmann and J.A.P.Heesterbeek. Wiley & Sons. 2000.
·       Mathematical Modelling in Epidemiology by J.C. Frauenthal. Springer-Verlag. 1980.
·       Epidemic Modelling by D.J.Dalley and J.Gani. Cambridge UP. 1999.
·       Mollison D. Epidemic Models. Cambridge. Cambridge University Press. 1995.