Network Science

Basic information

Workload: 

45 hours

Prerequisite: 

Does not exist.

Syllabus: 

Examples of real networks, basic mathematical concepts of graphs: adjacency matrix, bipartite graphs, degrees, paths, Laplacians, random walks. Centrality measures. Similarity, homophily. Related components, “small world” effects, distribution of degrees and power laws, clustering coefficients. Network formation models: random graphs, preferential attachment. Diffusion, percolation and resilience in networks. Dynamic systems in networks. Network games.

Bibliography

Mandatory: 

·       Newman, Mark - Networks: An Introduction. Oxford University Press.
·       Jackson, Matthew - Social and Economic Networks.Princeton University Press
·       Barabási, Albert-László - Network Science - Cambridge University Press. (available online at  barabasi.com/networksciencebook/)

Complementary: 

·       Caldarelli. Guido e Catanzaro, Michele - Networks : a very short introduction. Oxford University Press
·       Easley, David e Kleinberg, Jon. Networks, crowds, and markets : reasoning about a highly connected world - Cambridge University Press.
·        Wilson, Robin J. - Introduction to graph theory - Prentice Hall.
·       Kiss, I.Z.; Miller, J.C. e Simon, P.L. - Mathematics of Epidemics on Networks - Springer
·       Estrada, Ernesto - A First Course in Network Theory - Oxford University Press