Partial Differential Equations and Applications

Basic information

Workload: 

45 hours

Prerequisite: 

Functional Analysis: Fundamentals

Syllabus: 

Introduction: Multi-index notation, examples. Transport Equation: homogeneous and non-homogeneous. Laplace equation: Fundamental solution; Average value; Green's Property, Function; Energy methods. Heat equation: Fundamental solution; Duhamel's principle; Average value formula; Solution properties; Energy Methods; Wave equation: Solution by spherical means (n = 1 and n = 3); Duhamel's principle; Energy method. Separation of variables (Fourier series). Plane and Traveling Waves (group speed and dispersion). Fourier transform. Distribution space and Fourier transform.

 

Teaching Plan

Bibliography

Mandatory: 

· Lawrence C. Evans; Partial Differential Equations; Springer-Verlag.
· John, Fritz (1982); Partial Differential Equations; Springer-Verlag.
· Iório, Rafael & Iório, Valéria; (1988); Partial Differential Equations: An Introduction. IMPA.

Complementary: 

·       Brezis, Haim (1993). Analyse Fonctionelle, Theorie et Applications Masson.
·       Figueredo, Djairo G. (1987); Análise de Fourier e EDP; IMPA.
·       Gustafson, Karl E. (1980); Partial Differential Equations and Hilbert Spaces Methods; John Wiley & Sons.
·       Smoller, Joel; Reaction Diffusion Equations; Springer-Verlag.
·       Trudinger, N.; Gilbarg, D. (1983); Elliptic PDE of Second Order; Springer-Verlag.