Introduction the Measure Theory

Measurable sets and measurement spaces. Construction of measures. Measurement extensions, Caratheodory Theorem. Lebesgue and Lebesgue-Stieltjes measure. Measurable Functions. Simple functions. Lebesgue integral. Monotonous convergence theorem, Fatou's lemma and dominated convergence theorem. Comparison between Riemann and Lebesgue integrals. Product measures and Fubini's theorem. Radon-Nikodym theorem. Lp spaces. Holder inequality and Minkowiski inequality; Completeness of Lp spaces. Convergence on average, uniform in almost every point and in Lp. Comparison between the types of convergence.

Mandatory: 

  • Measure theory course, Castro Junior, A. Armando .; Projeto Euclides Collection, 2008; 

  • Introduction to measurement and integration, Isnard Carlos; Projeto Euclides Collection, 2007; 

  • Real and Complex Analysis, Rudin, W .; McGraw-Hill 1986. 

Complementary: 

  • Measure Theory and Integration, Michael E. Taylor, American Mathematical Society, 2006; 

  • Measure Theory: A First Course, Carlos S Kubrusly, Academic Press, 2007; 

  • Real analysis and probability, Dudley, Cambridge studies in advanced Math, R. M, 2000; 

  • Real Analysis, Royden, H.L., New York: Addison Wesley, 1988;

  • The Elements of Integration and Lebesgue Measure, Robert G. Bartle, Wiley, 1995.

A A A
High contrast

Esse site usa cookies

Nosso website coleta informações do seu dispositivo e da sua navegação e utiliza tecnologias como cookies para armazená-las e permitir funcionalidades como: melhorar o funcionamento técnico das páginas, mensurar a audiência do website e oferecer produtos e serviços relevantes por meio de anúncios personalizados. Para mais informações, acesse o nosso Aviso de Cookies e o nosso Aviso de Privacidade.