Introduction to machine learning. Nearest neighbors method. Linear regression. Polynomial regression. RBF neural networks. Logistic regression and Bayesian variant. Kernel methods. Neural networks. Model selection. Main Component Analysis. Autoencoders. k-means. Mixture of Gaussians from the EM algorithm.
Basic Information
Mandatory:
- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
- Kecman, Learning and Soft Computing MIT Press, 2001.
- R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification (2nd Edition) Wiley-Interscience, 2000
Complementary:
- Cherkassky and F. M. Mulier Learning from Data: Concepts, Theory, and Methods, Wiley-IEEE Press; 2 edition, 2007.
- K. P. Murphy, Machine Learning, A Probabilistic Perspective, MIT Press, 2012
- S. Theodoris and K. Koutroumbas, Pattern Recognition, 3rd edition, Academic Press, 2006
- C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.5.
- B. Schölkopf, A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, 2001